All About Morse-Smale Complexes

What is a Morse-Smale Complex?
Simplification: cancellations in the complex.
An algorithm to compute for 2D PL data.
A discrete algorithm for 3D+ data.

Gradient Vectors

- The gradient of a differentiable scalar function f at a point p is $\nabla f(p) = (\frac{\partial f}{\partial x_0}(p),...,\frac{\partial f}{\partial x_n}(p))$
- Direction of steepest ascent
 perpendicular to contours

Gradient Vector Field

 The vector field given by the gradient vectors of a scalar function is the gradient vector field

$$\nabla f = (\frac{\partial f}{\partial x_0}, ..., \frac{\partial f}{\partial x_n})$$

Critical points in GVF

• Critical points where gradient vanishes

$$\nabla f(p) = \mathbf{0}$$

Critical points in GVF - 1D

Critical points where gradient vanishes

$$\nabla f(p) = \mathbf{0}$$

Critical points on a 1d domain

Critical points in GVF - 2D

· Critical points where gradient vanishes

$$\nabla f(p) = \mathbf{0}$$

Critical points on a 2d domain

Critical points in GVF - 3D

Critical points where gradient vanishes

$$\nabla f(p) = \mathbf{0}$$

Critical points on a 3d domain

Integral Lines

- Integral Lines
 - Agrees with the gradient at every point on line
 - Has an *origin* and *destination* (lower and upper limits) that are critical points
 - These form boundaries where gradient is zero

Properties of Integral Lines

- Integral Lines
 - DO NOT CROSS
 - Are perpendicular to contours everywhere
 - Cover all non-critical points in entire domain

Ascending/Descending Manifolds

Ascending/Descending Manifolds

- Associated with a critical point p

The collection of points in integral lines where p is the origin

Ascending / unstable

Descending / stable

Ascending manifolds of *f* are descending manifolds of *-f*Ascending manifolds form a cell complex

- boundary of ascending manifolds are lower dim asc manifolds
- two ascending manifolds do not intersect
- ascending manifolds partition M

Descending manifolds form a dual cell complex

Ascending/Descending Manifolds

Ascending/Descending Manifolds

Ascending/Descending Manifolds

Morse Complex

- Ascending/Descending Morse Complex
 - Cell complex partition of space

Morse-Smale function

 A Morse-Smale function is a Morse function where ascending and descending manifolds intersect only transversally

Morse Complex

Morse Complex

Morse-Smale function

- Transversal intersections:
 - Practically we say that
 - In 2d ascending/descending 1-manifolds cross at a point
 - In 3d ascending/descending 2-manifolds cross along arcs
- Can perturb a Morse function to make it Morse-Smale

Morse-Smale complex

- Given a Morse-Smale function
- The cell complex formed by the intersection of the ascending and descending manifolds is the Morse-Smale complex

Morse-Smale complex

Morse-Smale complex

1D domain

2D domain

Morse-Smale complex

Morse-Smale complex

- · Properties of cells
 - What do contours look like?
 - Can you extract the Morse complexes?
 - Can you extract the Contour Trees?
 - What is wrong with the definition:
 - A cell of the Morse-Smale complex is composed of the integral lines that share a common origin and destination?

A Simple Example

Simplification

Cancellations

Cancellations - how does it look?

- What happens to the complex?
 - Cells are extended
 - Cells merge
 - Arcs merge
 - Arcs are deleted
 - Nodes are removed

Cancellations – a general definition

- · Combinatorial change
 - Lower neighbors of the upper node are connected to upper neighbors of the lower node
 - All the arcs connected to *u* and *l* are removed
 - u and I are removed

Cancellations - 2D case

 For the special case of 2D, a cancellation is the merging of an extremum-saddleextremum

Cancellations - 3D case

Saddle-Extremum cancellations just as in 2D

1Saddle-2Saddle cancellations

Computing the 2d MS complex

• Why don't we just integrate from every point?

Computing the 2d MS complex

- Crossing integral lines!
 - Consistency want quads
 - What do you do with degeneracies?
 - Flat regions
 - multi-saddles

Algorithm 1 – 2D MS complex

- Edelsbrunner et al. Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds
 - Input: a scalar function on a simplicial 2-manifold mesh
 Triangles, edges, vertices
 - Output: the Quasi-Morse-Smale complex

Algorithm 1 – 2D MS complex

- 2-Stage Combinatorial algorithm
- (0) identify all critical points
- (1) trace descending paths from saddles
- (2) trace ascending paths from saddles, not allowing crosses of descending lines

A Simple Example

Algorithm 1 – 2D MS complex

• (0) identify all critical points

A Simple Example

Algorithm 1 – 2D MS complex

(1) trace descending paths from saddles
 Extend paths along steepest downward edge

A Simple Example

A Simple Example

Algorithm 1 – 2D MS complex

(2) trace ascending paths from saddles
 Must be careful not to cross descending lines!!!!

Paths ending at a saddle are forced around the saddle

A Simple Example

A Simple Example

Algorithm 1 – 2D MS complex

- Results
 - Combinatorial method
 - Handles degeneracies
 - Care has to be taken in keeping things separated

Algorithm 2 – 3D MS complex

- · Why is simple extension of 2D ideas difficult?
 - Trace descending manifolds
 - Arcs and surfaces from saddles
 - Trace ascending manifolds, keeping them separate from existing descending manifolds

H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds in "Proc. 19th Ann. Sympos. Comput. Geom. 2003", 361-370.

Algorithm 3 – Discrete MS complex

- Simple, generic, applicable to any dimension
- Based on discrete Morse theory:

R. Forman. A users guide to discrete Morse theory. In Proc. of the 2001 Internat. Conf. on Formal Power Series and Algebraic Combinatorics, A special volume of Advances in Applied Mathematics, page 48, 2001.

T. Lewiner. Constructing discrete Morse functions. Master's thesis, Department of Mathematics, PUC-Rio. 2002.

Continuous to discrete Morse theory

Continuous Case Discrete Case Morse function Discrete samples

Continuous to discrete Morse theory

A cell consists of Integral lines sharing a common origin and destination

A cell consists of the sum of paths sharing a common origin and destination

Continuous to discrete Morse theory

Morse function Continuous gradient Integral lines Critical points Morse-Smale Complex Discrete samples Discrete gradient vectors Gradient paths Critical cells Morse-Smale Complex

Algorithm 3 – Discrete MS complex

- Construct a discrete gradient vector field
- · Trace ascending and descending manifolds

Computing the discrete gradient on a mesh

• Given a mesh M with scalar valued defined at vertices

Computing the discrete gradient on a mesh

- Given a mesh M with scalar valued defined at vertices
- Assign a value to every cell

$$F(\alpha) = MAX\{\sigma : \sigma < \alpha\} + \varepsilon$$

Computing the discrete gradient on a mesh

- Given a mesh M with scalar valued defined at vertices
- Create gradient arrows in direction of steepest descent

Computing the discrete gradient on a mesh

Given a mesh M with scalar valued defined at vertices

 Create gradient arrows in direction of steepest descent

For i = 0,, d| i = 0

While not all i-cells have been marked
lowest = Lowest_Unmarked_iCell()

If Can_Pair (lowest)

Pair_With_Steepest_Descent_cofacet(lowest)

Else

Set_Critical(lowest)

Computing the discrete gradient on a mesh

- Given a mesh M with scalar valued defined at vertices
- Create gradient arrows in direction of steepest descent

```
For i = 0, \dots, d i = 0.

While not all i-cells have been marked
        lowest = Lowest_Unmarked_iCell()
   # Gan_Pair (lowest)
        Pair_With_Steepest_Descent_cofacet(lowest)
        Set Critical(lowest)
```

Computing the discrete gradient on a mesh

Computing the discrete gradient on a mesh

- Given a mesh M with scalar valued defined at vertices
- Create gradient arrows in direction of steepest descent

```
For i = 0, ...., d = 0
   While not all i-cells have been marked
        lowest = Lowest_Unmarked_iCell()
       Pair_With_Steepest_Descent_cofacet(lowest)
       Set Critical(lowest)
```

Computing the discrete gradient on a mesh

Given a mesh M with scalar valued defined at vertices

Create gradient arrows in direction of steepest descent

```
For i = 0, ...., d = 0
While not all i-cells have been marked
      If Can Pair (lowest)
      Pair_With_Steepest_Descent_cofacet(lowest)
      Set Critical(lowest)
```

Computing the discrete gradient on a mesh

Given a mesh M with scalar valued defined at vertices

Create gradient arrows in direction of steepest descent

```
For i = 0, ...., d = 0
   While not all i-cells have been marked
      If Can_Pair (lowest)
Pair_With_Steepest_Descent_cofacet(lowest)
      Set Critical(lowest)
```

Computing the discrete gradient on a mesh

Given a mesh M with scalar valued defined at vertices

Create gradient arrows in direction of steepest descent

```
For i = 0, ...., d j = 0
While not all i-cells have been marked
         lowest = Lowest_Unmarked_iCell()
    If Can_Pair (lowest)
        Pair With Steepest Descent cofacet(lowest)
        Set_Critical(lowest)
```

Computing the discrete gradient on a mesh

Given a mesh M with scalar valued defined at vertices

 Create gradient arrows in direction of steepest descent

```
For i = 0, ...., d i = 0

While not all i-cells have been marked | lowest = Lowest_Unmarked_iCell()

If Can_Pair (lowest)

Pair_With_Steepest_Descent_cofacet(lowest)

Else
Set_Critical(lowest)
```

Computing the discrete gradient on a mesh

- Given a mesh M with scalar valued defined at vertices
- Create gradient arrows in direction of steepest descent

For i = 0, ..., d i = 1

While not all'i-cells have been marked lowest = Lowest_Unmarked_iCell()

If Can_Pair (lowest)

Pair_With_Steepest_Descent_cofacet(lowest)

Else

Set Critical(lowest)

Computing the discrete gradient on a mesh

- Given a mesh M with scalar valued defined at vertices
- Create gradient arrows in direction of steepest descent
 For i = 0,, d i = 1

For i = 0, ..., d

While not all i cells har been marked

If Ca Pair (lowest)

If Sir_With_Steepest_Descert_cofacet(lowest)

Else

Set_composition

Computing the discrete gradient on a mesh

- Given a mesh M with scalar valued defined at vertices
- Create gradient arrows in direction of steepest descent

Computing the discrete gradient on a mesh

Given a mesh M with scalar valued defined at vertices

Create gradient arrows in direction of steepest descent

Computing the discrete gradient on a mesh

Given a mesh M with scalar valued defined at vertices

 Create gradient arrows in direction of steepest descent

Computing the discrete gradient on a mesh

· Now we have a discrete gradient!

- The Morse-Smale complex is given by simply tracing gradient paths
 - Arcs are paths that start and end at critical cells

References

- 2d Morse-Smale complexes
 - H. Edelsbrunner, J. Harer and A. Zomorodian. *Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds*. Discrete Comput. Geom. 30 (2003), 87-107.
 - P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci *A topological hierarchy for functions on triangulated surfaces*. IEEE Trans. on Visualization and Computer Graphics 2004
- 3d Morse-Smale complexes

H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci. *Morse-Smale complexes for piecewise linear 3-manifolds*. In "Proc. 19th Ann. Sympos. Comput. Geom. 2003", 361-370.

Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo Bremer, Bernd Hamann Topology-based Simplification for Feature Extraction from 3D Scalar Fields. IEEE Visualization (IEEE Visualization 2005), pp 535-542, 2005.

Attila Gyulassy, Peer-Timo Bremer, Valerio Pascucci, Bernd Hamann. A Practical Approach to Morse Smale Complex Computation: Scalability and Generality. IEEE Trans. Vis. Comput. Graph. (IEEE Visualization 2008), 14(6): 1619-1626, 2008.

Computing the discrete gradient on a mesh

Now we have a discrete gradient!

- The Morse-Smale complex is given by simply tracing gradient paths
 - Arcs are paths that start and end at critical cells

Questions?